Product Data Sheet

KP-3DPFP20

3.5 GHz to 3.8 GHz, 15 Degree Flat Panel Antenna, 20 dBi, 2-Port, ±45 Slant Polarization

- Stable 20 dBi gain in a small-profile 15" x 15" x 1" form factor
- Polarization-Adjustable Pipe Mount Brackets
- Industrial design with UV-resistant radome and rugged mounting hardware
- Suppressed side lobes and superior front to back reduces interference in point-to-point links in the CBRS band

Electrical Specification

Frequency Band	MHz	3500-3800
Gain	dBi	20.0±0.5
Polarization		H/V or +/-45 Slant
Horizontal HPBW	Degree	15±1
Horizontal Squint	Degree	±1
Vertical HPBW	Degree	16±1
Electrical Downtilt	Degree	0
Front-to-Back Ratio @ 180°±30°	dB	25
Cross-polarization Ratio Over HPBW	dB	15
VSWR		1.3 typ 1.5 max
Return Loss	dB	17 typ 14 max
Max. Input Power per Port	W	50
Impedance	Ohms	50

Mechanical Specifications

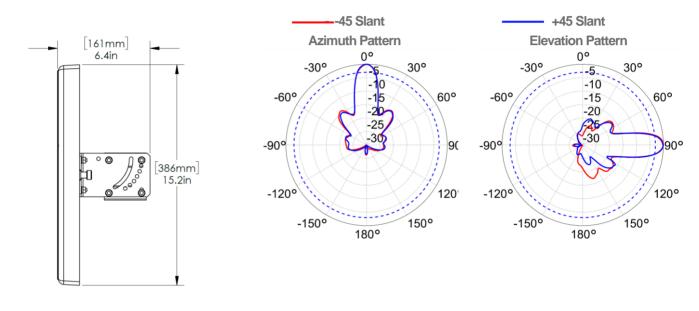
RF Connector Type	N-Type Female
RF Connector Quantity	2
RF Connector Position	Bottom of reflector
Electrical Grounding	RF connector grounded to reflector and mounting bracket
Radome Material	UV Resistant ABS
Ingress Protection	IP55 rain and dust resistant
Max. Wind Speed	210km/h 130mph
Temperature Range	-40° to +60° C -40° to +140° F

Bracket Specifications

Material Type	Powder Coated Galvanized Steel
Mechanical Tilt (Degree)	±15
Mounting Type	Pipe Mount or Wall Mount
Mounting pole diameter	30 mm – 60 mm 1.2 in – 2.0 in

Antenna Dimensions

Length	386 mm 15.2 in
Width	386 mm 15.2 in
Height	30 mm 1.2 in
Net Weight, with brackets	2.2 kg 4.8 lb


Product Data Sheet

Shipping Dimensions

Length	406 mm 16 in
Width	406 mm 16 in
Height	89 mm 3.5 in
Net Weight, with brackets	2.4 kg 5.3 lb

Graphical Data

Appendix

HPBW: Average and variation of the antenna's 3dB beamwidth (half power beamwidth) in its horizontal (Azimuth) or vertical (Elevation) pattern. Horizontal Squint: Angle in the antenna's azimuth pattern in which the maximum gain occurs. Reported is the maximum variation in the frequency band. Electrical Downtilt: Angle in the antenna's elevation pattern in which the maximum gain occurs.

Gain: Antenna's average gain and variation in each frequency band.

Front to Back Ratio $@ 180^{\circ}\pm30^{\circ}$: Average difference between the antenna's maximum gain and the maximum gain in the antenna's back lobe over $\pm30^{\circ}$ angles. Cross-polarization Ratio over HPBW (dB): Typical difference between the co-polarization and cross-polarization gain across the sector's HPBW.